3D打印技术在医学领域的进展

1

手术规划模型

对于风险高难度大的手术,术前规划十分重要。传统上,通过CT、核磁共振(MRI)等影像设备获取患者的数据,是做医生手术预规划的基础,但得到的医学影像是二维的。

3D打印机可以将三维模型直接打印出来,既可辅助医生进行精准的手术规划、提升手术的成功率,又方便医生与患者就手术方案进行直观的沟通。此外,3D打印也可以为医患双方提供可溯源的依据。

世界首例Mr混合现实技术辅助的乳房重建手术完成

2017年3月,湖南省肿瘤医院医生术中头戴已经输入患者三维影像信息的HoloLens眼镜,术前3D血管数据个性化精确设计切取面积为22cm*14cm的股内侧穿支皮瓣游离移植一期重建乳房,手术历时6个小时就得以安全顺利完成。

3D打印心脏模型挽救洛杉矶婴儿生命

当18个月大的NateYamane由于心脏肺动脉变窄开始危及生命时,儿科心脏病专家FrankIng意识到他需要一个支架,一个用于治疗狭窄或弱动脉的小网状管。使用Nate的心脏CT扫描数据,医院团队创建了阻塞区域的3D打印模型。Ing博士制作了一个特殊的小型支架,以适应从狭窄动脉的3D模型。结果是成功的:Nate的氧水平隔夜得到了改善。

广东完成首例3D打印换脊骨

南方医科大学附属第三医院(广东省骨科医院)骨肿瘤科团队成功为一名脊索瘤患者切除了脊椎,并植入3D打印人工椎体,这是广东完成的首例3D打印换脊骨手术。个性化的3D打印人工脊柱更有利于保护神经,并利于术后骨愈合。

 

 

2

手术导板

手术导板是将手术预规划方案准确的在手术中实施的辅助手术工具。在多个学科都有应用,例如:关节类导板、脊柱导板、口腔种植体导板,还有肿瘤内部内照射源粒子植入的导向定位导板等。

Materialise制造儿科3D打印手术导板获FDA许可

这意味着患有先天性骨疾病或骨骼受伤的儿童就能得到更好的治疗。该3D打印导板是三维的,根据对患者骨骼的扫描数据生成,可以让医生获得最真实的信息,从而更好地规划手术。另外,其制造成本也不高,即便普通患者也负担得起。

 

 

3

植入物

一些植入物是通过铸造或传统的金属加工方法来制造的,需要首先制造出模具,对于只需要一件或者少量的植入物来说,单件生产成本十分昂贵。再加上具有生物相容性的植入物材料本身的高价格,骨科植入物的总制造成本是十分昂贵的。

近年医疗行业越来越多地采用金属3D打印技术(直接金属激光烧结或电子束熔融)设计和制造医疗植入物。3D打印技术也让定制化植入物的交货速度得以提升,从设计到制造一个定制化的植入物最快时可以在24小时之内完成。

工程师通过医院提供的X射线、核磁共振、CT等医学影像文件,建立三维模型并设计植入物,最终将设计文件通过金属3D打印设备制造出来。

OPM公司的3D打印骨植入物获得欧洲专利批准

牛津高性能材料公司(OPM)的“用于骨替换的定制植入物”将利用新兴的OsteoFab植入物制造工艺。OPM现在将把其高性能添加制造工艺应用于3D打印定制植入物,以执行骨替换操作。该欧洲专利最初于2011年底提交,于2016年12月21日生效,并将持续到2029年8月7日。目前,OPM仍是第一家也是唯一一家获得FDA510(k)批准的3D打印患者特异性聚合物基植入物的公司。

澳洲成功实施首例3D打印钛-聚合物胸骨植入手术

澳大利亚联邦科学与工业研究组织(CSIRO)、墨尔本医疗植入物公司Anatomics和英国医生联手,为一名61岁的英国患者Edward Evans实施了3D打印钛-聚合物胸骨植入手术,这也是全球首创。之前这种植入物一般都会用纯钛制造,新型胸骨植入物能够比之前的纯钛植入物更好地帮助重建人体内的“坚硬与柔软组织”。Evans术后仅12天就能出院,并且目前恢复十分迅速。

印度MedantaTheMedicity医院的医生们让一名一直患有脊柱结核的32岁妇女再次行走。这也是印度首次进行此类手术。女患者的第一节、第二节、第三节颈椎严重损伤,这意味着在她的颅骨与下颈椎之间没有任何骨骼支撑。借助先进的金属3D打印技术,医生们3D打印了一个钛椎骨,并用它替代了患者脊柱中的受损部分,从而有效填补了第一节颈椎和第四节颈椎之间的空白。手术一共进行了10小时。这也是世界上第三例此类手术。

鼓楼医院国内首创3D打印导航治蝶颚神经痛

南京鼓楼医院团队对患者进行了头颅薄层CT扫描,设计并3D打印出个性化的蝶颚神经节介入导航模板,术中以模板引导穿刺至目标靶点,以少量局麻药物精准地完成了蝶颚神经节阻滞,阻滞完成时患者即刻感到鼻塞感及眼部的酸胀感明显缓解,左面部的持续性隐痛也明显好转。

随后,团队利用该导航模板进行了一次蝶颚神经节脉冲射频治疗与两次阻滞治疗,患者左面部的疼痛完全消失。3D打印个性化导航模板,不仅极大缩短了手术时间,减少了手术的创伤,对需要进行多次手术操作的患者,更是极大的帮助。

 

 

4

康复医疗器械

与3D打印钛合金定制化飞机零部件和超级轿跑个性化零部件一样,假肢、助听器等康复医疗器械同样具有小批量、定制化的需求,并且设计具备复杂性,传统数控机床受到加工角度等因素的限制往往难以实现。此外,利用3D打印技术制作单个定制化康复辅具的成本会显着下降。

3D打印康复医疗器械的推广需要专业的医疗器械服务商介入,从数据采集、设计、成型以及产品的认证方面进行专业的操作。

史上最小3D打印定制钛金属助听器问世

Phonak与德国3D打印公司EnvironTEC合作开发出定制式钛金属助听器VirtoB-Titanium。这一定制模式的亮点在于外壳和主要部分均为3D打印,并且外壳不是由传统的助听器外壳丙烯酸构成,而是使用重量更轻,强度更高的钛金属制成,为此,外壳的厚度在同等安全程度的情况下减少了50%(0.2毫米)。

通过3D打印技术,不但大大缩短了助听器定制的时间(据了解,该设备可在1小时内制作65个助听器壳或45个耳模),还将更加精确地适配听损者的耳道形态,这种技术几乎不受传统耳模制作人员的技术差距影响。

 

 

 

5

3D打印在口腔科的应用

牙齿修复和治疗的成本是牙科诊所、实验室需要考虑重要因素,很多有先见之明的牙科诊所、实验室已经引入数字化口腔技术,以提升效率、降低成本。近年来,以软件设计为基础的牙科修复变得普及,很多牙科诊所、实验室或专业义齿生产企业都引入了3D打印技术。

许多牙科诊所或实验室都有利用3D打印机来制造患者牙齿模型。制作模型需要的三维数据可以通过直接扫描口腔来收集(扫描整个口腔大约需要2分钟),或者通过间接扫描传统的物理模型的方式来收集。

直接3D打印义齿也已经可以实现。Envision TEC公司已经有一种打印材料获得了食品及药物管理局(FDA)的认证,这些3D材料可以直接用来打印临时牙冠。该临时牙冠给患者佩戴的时间甚至可以长达5年之久。

此外,通过3D打印技术生产的牙齿矫正器也走向应用。比起传统的牙齿矫正器,3D打印透明矫正器不仅隐形、美观,而且尺寸更适合患者在矫正期间每个阶段的牙齿状态。

在牙科行业常用到的3D打印技术主要有:光敏树脂选择固化技术(SLA)、选择性激光熔化技术(SLM)、喷墨打印技术(Polyjet)、金属激光烧结技术(DMLS),实质上也是SLM技术。

不论是三维口腔扫描、CAD设计软件还是用3D打印牙模、牙冠,这些数字化技术的意义在于,使医生逐渐不必再亲自动手制作模型、义齿等牙科产品、承担牙科技师的工作,而是将更多精力回归到口腔疾病的诊断及实施口腔手术本身。对于牙科技师而言,虽然远在医生诊室之外,但只要获得患者的口腔数据,就可以根据医生要求定制出精准的牙科产品。

 

 

 

6

生物3D打印

之前提到使用金属、塑料等非活体组织材料3D打印的定制化假肢、牙科、骨科植入物、助听器外壳等医疗器械都属于“初级阶梯”。而打印血管、软骨组织这类单一的活体组织属于“中级阶梯”。3D打印的人工肝脏、心脏等人工器官则属于“顶级阶梯”。

无论是人造血管、软骨组织,还是肝脏组织、肾脏组织,其核心是特定类型细胞的分离(或定向诱导)及大规模扩增。而生物3D打印技术,在人工组织、器官培养过程更多承担了三维形状的构建,即让人体细胞按照预先设计好的形状来生长。因此人造器官、组织的发展更大程度上取决于生物技术的发展。

日本京都大学研发出促进神经再生的生物3D打印导管

日本京都大学的研究人员使用 来自Cyfuse Biomedical的Regenova 3D生物打印机创建管状导管,可以促进受损的神经细胞再生。研究人员在六只老鼠身上使用8mm3D打印导管桥接神经中的5mm间隙;对于其他六只,使用当前标准的硅管。研究人员发现,3D生物打印导管有助于促进老鼠的神经再生,速度比硅胶管更快,这进一步表明生物3D打印导管有一天可以用于帮助患者的神经损伤恢复。

加拿大生物公司Aspect联手强生研发3D打印膝关节软骨

加拿大生物技术公司Aspect Biosystems与强生DePuy Synthes Products达成一项新的研究合作,用Aspect的“打印机上的实验室(Lab-on-a-Printer)”生物打印平台来开发适用于手术治疗的生物打印膝盖半月板。

 

 

 

7

3D打印与制药

通过3D打印成形技术制备药物缓释装置,与传统压片方法相比具有独特的优势。3D打印可以实现多种材料精确成形和局部微细控制,得到具有复杂内部结构的装置;释药特征与所设想的复杂释药行为一致。通过3D打印成形技术,将粉末材料粘结成形,可以方便的实现医学应用中常需要的具有复杂型腔的多孔结构,对于药物释放有着重要意义。

通过调整打印液流速、喷头移动速度、打印液液滴直径、粉末铺层厚度、喷涂次数、喷涂角度、喷涂位置等工艺参数,可以改变药剂中含量、辅料成分和组成,从而改变药物释放速率和释放量,使得具体的生产过程灵活而简单,通过CAD(计算机辅助设计)为单个患者设计制造理想化的治疗方式成为可能。

3D打印协助科学家研习开发可探测病毒的医用传感器

 

3D打印原型探测器,其中包含一个采用了机器学习技术来不断进行自我调整的传感器。一种新的、更有效的微小物质检测方法由此诞生,该方法可检测癌症生物标志物、病毒、蛋白质等。这可以改善严重感染和疾病的诊断和治疗。读取器包括四种不同颜色的LED、一个相机和一个3D打印塑料外壳。由于采用了3D打印技术,原型的造价很便宜,但同时也很耐用,可根据不同的情况进行定制化设计。

   陕西爱骨医疗股份有限公司    地址:宝鸡高新开发区27路